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1. Introduction

This supplemental material explains virtual spherical Gaussian
lights (VSGLs) [Tok15b] which is an effective application of our
filtered importance sampling (FIS).

2. Spherical Gaussians

A spherical Gaussian (SG) is a type of spherical function and is
represented using a Gaussian function γ with respect to a direction
vector ωωω ∈ S2 as follows:

G(ωωω,ξξξ,λ) = γ

(
‖ωωω−ξξξ‖, 1

λ

)
= e−

λ

2 ‖ωωω−ξξξ‖2
= eλ((ωωω·ξξξ)−1),

where ξξξ ∈ S2 is the lobe axis, and λ is the lobe sharpness. ξξξ and
1
λ

correspond to the mean and variance for the Gaussian function,
respectively. The integral of an SG is given by

A(λ) =
∫

S2
G(ωωω,ξξξ,λ)dωωω =

2π

λ

(
1− e−2λ

)
.

A normalized SG G(ωωω,ξξξ,λ)
A(λ) is known as the Von Mises-Fisher distri-

bution. For VSGLs, this distribution is used for representing reflec-
tion lobes.

2.1. SG approximation of reflection lobes

Diffuse lobes. For the Lambert bidirectional reflectance distribu-
tion function (BRDF) ρd , the diffuse reflection lobe can be approx-
imated with an SG taking energy conservation into account as fol-
lows:

ρd(y,ωωω
′,ωωω)max(ωωω ·n,0)≈ Rd

G(ωωω,n,λd)

A(λd)
, (1)

where ρd(y,ωωω′,ωωω) = Rd
π

, ωωω
′ ∈ S2 is the incoming direction, n∈ S2

is the surface normal at the world position y ∈R3, Rd is the diffuse
reflectance, and λd ≈ 2 is the sharpness of the diffuse lobe which
is obtained by using the least square method.

Specular lobes. For the microfacet BRDF ρs, the specular re-
flection lobe is fitted with a single SG by using Wang et al.
[WRG∗09]’s analytical approximation. The BRDF is separated into

two factors: the unnormalized normal distribution function (NDF)
D(ωωωh) whose maximum is one, and the rest of the factors C(ωωω) as
follows:

ρs(y,ωωω′,ωωω)max(ωωω ·n,0) =C(ωωω)D(ωωωh),

where ωωωh =
ωωω+ωωω

′

‖ωωω+ωωω′‖ is the halfway vector of the incoming direction
and outgoing direction. Bell-shaped NDFs (e.g., Phong [Bli77],
Beckmann [BS63] and GGX [TR75, WMLT07] NDFs) can be ap-
proximated with an SG as

D(ωωωh)≈ G(ωωωh,n,λh).

For Beckmann or GGX NDFs, λh = 2
α2 where α is the roughness

parameter. Using spherical warping, this can be approximated with
a function of ωωω as

G(ωωωh,n,λh)≈ G(ωωω,ξξξs,λs),

where ξξξs is the reflection vector given by ξξξs = 2(ωωω′ · n)n−ωωω
′,

and λs =
λh

4|ξξξs·n|
. Hence, the specular lobe is approximated with the

following equation:

ρs(y,ωωω′,ωωω)max(ωωω ·n,0)≈C(ωωω)G(ωωω,ξξξs,λs).

Moreover, since microfacet BRDFs mostly preserve energy for
highly glossy surfaces, the specular lobe can be approximated using
a normalized SG as follows:

ρs(y,ωωω′,ωωω)max(ωωω ·n,0)≈ Rs
G(ωωω,ξξξs,λs)

A(λs)
, (2)

where Rs is the specular reflectance. Anisotropic spherical Gaus-
sians (ASGs) [XSD∗13] are also usable in the same manner.

3. Virtual Spherical Gaussian Lights (VSGLs)

This paper approximates a cluster of virtual point lights (VPLs)
[Kel97] with a VSGL. For a VSGL, the total radiant intensity
and positional distribution of VPLs are represented using an SG
and isotropic Gaussian distribution respectively. This representa-
tion can be computed using a simple summation operation.
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3.1. Radiant intensity

The radiant intensity of the jth VPL is given as

I j(ωωω) = Φ jρ(y j,ωωω
′
j,ωωω)max(ωωω ·n j,0),

where Φ j is the power of the jth photon emitted from the light
source, ωωω

′
j ∈ S2 is the incoming direction of the photon, and

n j ∈ S2 is the surface normal at the VPL position y j ∈ R3, and
ρ(y j,ωωω

′
j,ωωω) is the BRDF. This paper first divides this BRDF into

diffuse and specular components (i.e., ρd and ρs). Then, the total
radiant intensity of clustered VPLs is approximated with a single
SG for each component by using Toksvig [Tok05]’s filtering. For
ease of explanation, this subsection hereafter describes only a sin-
gle BRDF component. The total radiant intensity of a VPL cluster
S is represented as

Iv(ωωω) = ∑
j∈S

I j(ωωω)≈ cvG(ωωω,ξξξv,λv) .

To compute SG parameters cv, ξξξv and λv efficiently, each reflection
lobe is approximated using Eq. 1 or Eq. 2 as follows:

Iv(ωωω) = ∑
j∈S

Φ jρ(y j,ωωω
′
j,ωωω)max(ωωω ·n j,0)

≈ ∑
j∈S

Φ jR j

G
(

ωωω,ξξξ j,λ j

)
A(λ j)

=

(
∑
j∈S

Φ jR j

)
∑ j∈S Φ jR j

G(ωωω,ξξξ j ,λ j)
A(λ j)

∑ j∈S Φ jR j
,

where R j is the reflectance, and ξξξ j and λ j are the axis and sharpness
of the reflection lobe at the jth VPL. Then, the weighted average of
the normalized SGs weighted by the VPL power Φ jR j is approxi-
mated with a single SG as

∑ j∈S Φ jR j
G(ωωω,ξξξ j ,λ j)

A(λ j)

∑ j∈S Φ jR j
≈

G(ωωω,ξξξv,λv)

A(λv)
.

Using Toksvig’s filtering, the jth normalized SG is first approxi-
mately converted into its averaged direction as ξ̄ξξ j =

λ j
λ j+1 ξξξ j. Next,

the weighted average of the directions is computed by

ξ̄ξξv =
∑ j∈S Φ jR j ξ̄ξξ j

∑ j∈S Φ jR j
.

Finally, the filtered SG is obtained from the weighted average di-

rection as ξξξv =
ξ̄ξξv

‖ξ̄ξξv‖
, λv =

‖ξ̄ξξv‖
1−‖ξ̄ξξv‖

. The coefficient cv is given by

cv =
∑ j∈S Φ jR j

A(λv)
.

3.2. Positional distribution

In this paper, the positional distribution of VPLs is represented with
a single isotropic Gaussian distribution for a VSGL. Unlike radiant
intensity, this distribution is not divided into diffuse and specular
components in order to avoid the increase of visibility tests (i.e.,
shadow maps). The weighted mean of VPL positions is computed

by

µµµv =
∑ j∈S Φ j(Rd, j +Rs, j)y j

∑ j∈S Φ j(Rd, j +Rs, j)
,

where Rd, j and Rs, j are the diffuse reflectance and specular re-
flectance at the jth VPL, respectively. The positional variance is
also calculated using weighted average as

σ
2
v =

∑ j∈S Φ j(Rd, j +Rs, j)‖y j‖2

∑ j∈S Φ j(Rd, j +Rs, j)
−‖µµµv‖

2 .

Assuming VPLs are distributed on a planar surface, the emitted
radiance of a VSGL is represented as follows:

Le(y,ωωω)≈
Iv(ωωω)

2πσ2
v |ωωω ·n|

γ

(
‖y−µµµv‖,σ

2
v

)
, (3)

where n is the surface normal which will be eliminated in shading
(§4.1).

3.3. VSGL generation using reflective shadow maps

As mentioned in §3.1 and 3.2, a VSGL is generated by calculat-
ing the total VPL power ∑ j∈S Φ jR j, total weighted emission direc-
tion ∑ j∈S Φ jR j ξ̄ξξ j, total weighted position ∑ j∈S Φ j(Rd, j +Rs, j)y j,
and total weighted squared norm of the position ∑ j∈S Φ j(Rd, j +

Rs, j)‖y j‖2. Therefore, these values are stored into reflective
shadow maps (RSMs) [DS05], and then they are mipmapped to
obtain the total values. The ith VPL cluster is represented by the
unnormalized filtering kernel g((x−xi)/si) on the RSM. For ex-
ample, Let f (x) be VPL power stored in the RSM, then the total
VPL power of ith VPL cluster is given by

∑
j∈S

Φ jR j =
∫
[0,1]2

f (x)g((x−xi)/si)dx≈ 4li

M
f̄ (xi, li).

We are also able to calculate the total weighted emission direction,
total weighted position, and total weighted squared norm of the
position in the same manner. In this paper, the image-space position
xi and mip level li are sampled based on FIS.

4. Shading

For each shading point yp with view direction ωωωp, the reflected
radiance is calculated using the rendering equation [Kaj86] defined
by

L(yp,ωωωp) =
∫

S2
Lin(yp,ωωω)ρ(yp,ωωωp,ωωω)max(ωωω ·np,0)dωωω, (4)

where Lin(yp,ωωω) is the incoming radiance, and np is the surface
normal at the shading point. This paper approximates the incoming
radiance using SGs for the analytical approximation of the render-
ing integral [WRG∗09, XSD∗13].

4.1. Incoming radiance

Using Eq. 3, the approximated incoming radiance is given by

Lin(yp,ωωω) = V (yp,y)Le(y,−ωωω)

≈ V (yp,µµµv)Iv(−ωωω)

2πσ2
v |ωωω ·n|

γ

(
‖y−µµµv‖,σ

2
v

)
, (5)
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where ωωω =
y−yp
‖y−yp‖ , V (yp,µµµv) is the visibility between yp and µµµv

obtained from a shadow map. The position y is assumed to be on the
planar surface defined by the normal n and position µµµv. However, n
and y are unknown for shading. Therefore, we project the positional
distribution onto a sphere centered at a shading point instead. To
correct the energy for this projection, |ωωω ·n| is multiplied similar to
virtual spherical lights [HKWB09]. Since it is divided by |ωωω ·n|, n
is eliminated. This is reasonable because the actual surface normal
distribution is taken into account by the radiant intensity Iv(−ωωω).
Therefore, Eq. 5 is approximated with the following equation:

Lin(yp,ωωω)≈
Iv(−ωωω)

2πσ2
v

γ

(
‖yr−µµµv‖,σ

2
v

)
,

where ωωω =
yr−yp
‖yr−yp‖ , and yr is the position on the sphere defined

by the center yp and radius ‖µµµr− yp‖. This is derived assuming a
small σv or large radius, but it does not produce noticeable artifacts
in practice for a large σv and small radius. The Gaussian term can
be rewritten into an SG as

γ

(
‖yr−µµµv‖,σ

2
v

)
= G(ωωω,ξξξµ,λσ), (6)

where ξξξµ =
µµµv−yp
‖µµµv−yp‖ , and λσ =

‖µµµv−yp‖2

σ2
v

. This SG represents the
spherical region of the VSGL viewed from yp. Using Eq. 6, the
incoming radiance is approximated with the product of two SGs
which yields an SG as follows:

Lin(yp,ωωω) ≈
cv

2πσ2
v

G(ωωω,−ξξξv,λv)G(ωωω,ξξξµ,λσ)

= cinG(ωωω,ξξξin,λin) , (7)

where ξin =
λσξξξµ−λvξξξv

‖λσξξξµ−λvξξξv‖
, λin = ‖λσξξξµ − λvξξξv‖, and cin =

cv
2πσ2

v
eλin−λv−λσ .

4.2. Shading via product integrals of SGs

Since the reflection lobe ρ(yp,ωωωp,ωωω)max(ωωω ·np,0) can be approx-
imated using SGs and ASGs, Eq. 4 can be calculated using the an-
alytical product integral.

Diffuse reflection. Using Eq. 1 and Eq. 7, the rendering integral
of the diffuse component is calculated using the analytical prod-
uct integral of two SGs. This approach is efficient for a few VS-
GLs [Tok15a]. However, a light leak error caused by the SG ap-
proximation of reflection lobes cannot be reduced by increasing
the number of VSGLs. Unlike the secondary bounce represented
by VSGLs, light leaks are noticeable at the first bounce which is
more visually important. Therefore, for thousands of VSGLs, the
cosine factor at the first bounce is assumed to be a constant and
pulled out of the integral [WRG∗09] as follows:

Ld(xp,ωωωp) =
∫

S2
Lin(xp,ωωω)ρd(xp,ωωωp,ωωω)max(ωωω ·np,0)dωωω

≈ cinRd
π

A(λin)max(ξξξin ·np,0).

In addition, when λin is not small, A(λin) ≈ 2π

λin
can be assumed

[IDN12]. Therefore, diffuse reflection is inexpensively calculated

using the following equation:

Ld(xp,ωωωp)≈
2cinRd

λin
max(ξξξin ·np,0) .

Specular reflection. While SGs are used for VSGLs, this paper
employs an ASG to approximate a specular lobe at a shading point.
This is because a specular lobe can be anisotropic even if it is an
isotropic BRDF model, especially for shallow grazing angles. For
simplicity, ASGs are used only for the first bounce which is more
visually important than the second bounce. In addition, the product
integral of an ASG and SG [XSD∗13] has a reasonable computa-
tion cost. An ASG is defined as

Ǵ(ωωω,ξξξx,ξξξy,ξξξz,ηx,ηy) = max(ωωω ·ξξξz,0)e
−ηx(ωωω·ξξξx)

2−ηy(ωωω·ξξξy)
2
,

where ξξξx,ξξξy,ξξξz are orthonormal vectors, and ηx,ηy are
the bandwidth parameters. Since a specular lobe is ap-
proximated with an ASG as ρs(yp,ωωωp,ωωω)max(ωωω · np,0) ≈
C(ωωω)Ǵ(ωωω,ξξξx,ξξξy,ξξξz,ηx,ηy), the rendering integral is calculated as

Ls(yp,ωωωp) =
∫

S2
Lin(yp,ωωω)ρs(yp,ωωωp,ωωω)max(ωωω ·np,0)dωωω

≈ cinC(ξξξin)
∫

S2
G(ωωω,ξξξin,λin)Ǵ

(
ωωω,ξξξx,ξξξy,ξξξz,ηx,ηy

)
dωωω

≈
πcinC(ξξξin)Ǵ

(
ξξξin,ξξξx,ξξξy,ξξξz,

ηxν

ηx+ν
,

ηyν

ηy+ν

)
√

(ηx +ν)(ηy +ν)
,

where ν = λin
2 .

5. Implementation Details of VSGL Generation

VSGL generation using FIS. Our implementation is based on
Tokuyoshi [Tok15b], and uses DirectX R© 11. After rendering an
RSM, an additional RSM (which stores VPL positions, squared
VPL positions, and average emission directions to calculate VSGL
parameters) is generated using a compute shader. Then, these
RSMs are mipmapped using a graphics API (i.e., GenerateMips
of DirectX). Finally, VSGLs are generated based on FIS. The pro-
posed mip level li is calculated using Algorithm 1.

Algorithm 1 Mip level calculation using the bisection method.
lmin← 0
lmax← the top mip level of p̄
for k = 1 to the user-specified iteration count do

l← (lmin + lmax)/2
if 4l

M p̄(xi, l)< K
N then

lmin← l
else

lmax← l
end if

end for
li← (lmin + lmax)/2
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VSGL generation using k-means. For comparison, this paper
uses k-means VPL clustering using 2D image space and 3D world
space. The k-means algorithm first samples the cluster center ac-
cording to the probability density function, and then the closest
center is computed for each VPL. In our implementation, all the
texels are assigned to clusters for high-frequency geometries and
textured glossy materials unlike Dong et al. [DGR∗09]. To acceler-
ate the search of the closest cluster center for each texel, a kd-tree of
cluster centers is built using parallel construction of a binary radix
tree [Kar12]. This tree-based search is more efficient than using a
2D uniform grid proposed by Prutkin et al. [PKD12] for densely
distributed cluster centers. Once clusters are assigned to all the tex-
els, those texels are sorted by cluster ID. Then, to compute the total
value of clustered texels, a thread is dispatched for each cluster sim-
ilar to Prutkin et al. [PKD12]. Unlike Prutkin et al., we use a GPU
radix sort [MG10] instead of bitonic sort for the high-resolution
RSM and G-buffer. Although k-means clustering can be improved
by updating cluster centers in an iterative fashion, we do not update
iteratively in this paper.
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